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Abstract—Sensor faults continue to be a major hurdle for 

systems health management to reach its full potential. At the 
same time, few recorded instances of sensor faults exist. It is 
equally difficult to seed particular sensor faults. Therefore, 
research is underway to better understand the different fault 
modes seen in sensors and to model the faults. The fault models 
can then be used in simulated sensor fault scenarios to ensure 
that algorithms can distinguish between sensor faults and system 
faults. The paper illustrates the work with data collected from an 
electro-mechanical actuator in an aerospace setting, equipped 
with temperature, vibration, current, and position sensors.  The 
most common sensor faults, such as bias, drift, scaling, and drop-
out were simulated and injected into the experimental data, with 
the goal of making these simulations as realistic as feasible.  A 
neural network based classifier was then created and tested on 
both experimental data and the more challenging randomized 
data sequences. Additional studies were also conducted to 
determine sensitivity of detection and disambiguation efficacy to 
severity of fault conditions. 
 

Index Terms— modeling, transducers, fault diagnosis 

I. INTRODUCTION 
ENSORS play a central role in modern systems to realize 
their full benefits of cost and performance. The degree of 

autonomy of these systems is highly correlated with the 
number of sensors used in those systems. Concepts like 
guaranteed uptime also mandate continuous state analysis with 
a respective increase in use of sensors.  

However, as systems have become more reliable as a whole, 
sensors have attained the reputation as being the “weak link”. 
Indeed, sensor failures have been responsible for highly 
publicized system breakdowns such as the aborted take-off of 
the space shuttle. Particularly for systems that require very 
high overall reliability combined with the need to keep weight 
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low, there is a reluctance to add more sensors for that reason. 
Where sensors are used, they are configured with up to 
quadruple redundancy to be able to deal with sensor failure – 
which, as in the cited case, may not prevent operational 
disruption (depending also on the fault handling logic). This, 
in contrast to the general trend described above, has 
hamstrung the proliferation of system health management 
systems and consequently the potential technical advances of 
these systems. 

Besides the weight addition, redundant sensors are not 
always feasible due to considerations of cost, space 
constraints, electrical/power constraints, and complexity 
increase. Any new sensor has to “work its way on-board”. 

It is therefore critical to have an understanding how sensors 
fail in order to mitigate the effects of off-nominal sensor 
behavior. While sensor fault detection and diagnosis are well 
addressed in the literature, there is no consensus on 
classification and nomenclature for sensor faults. Equally 
sparse are research efforts on characterization of the various 
classes of sensor faults and efforts to develop realistic sensor 
fault models that allow the simulation of fault effects and the 
study on the impact of the systems they are used in. Such 
models and associated simulations would also allow the study 
of sensor suit development; testing of fault detection, 
isolation, and recovery algorithms; and assessment of 
prognostic algorithm performance. 

The paper starts with classifying and summarizing fault 
modes for the most common sensor types used in the 
aerospace industry.  A brief overview of the state-of-the-art 
diagnostic techniques for sensor faults is then provided.  After 
that the discussion shifts to describing experiments conducted 
by the team in simulating and diagnosing sensor faults.  
Finally, the results of the study are discussed and plans for 
future work outlined. 

II. SENSOR FAULT MODES 
Success of any health monitoring system heavily depends 

on the reliability of the employed sensors. In abstraction, a 
sensor fault may be defined as an unexpected deviation in the 
observed signal output in the absence of any anomalous 
condition in the system under test. Sensor faults occur due to 
various reasons, like manufacturing inefficiencies, wear and 
tear with long term usage, incorrect calibration, or 
mishandling. That often results in some physical deviation 
from design specifications within the sensor body, which in 
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turn leads to unexpected outputs. From a fault tolerant control 
systems point of view, it is usually sufficient to identify the 
erroneous behavior of a sensor such that no unintended 
feedback is sent to the controller. System health monitoring is 
more concerned with the type of deviation observed from the 
normal expected output, irrespective of the actual physical 
damage that causes it. However, given the central role that 
sensor faults play in advancing system health management, it 
is imperative to have a good understanding of the various 
failure mechanisms within the sensors. Mapping failure 
mechanisms to resulting behaviors is critical to properly 
model sensor faults. 

One can establish five basic behavioral sensor fault 
categories:  

Bias: A constant offset from the nominal statistics of the 
sensor signal. Another way to describe bias is as the sensor 
output at zero input.  Bias can occur due to incorrect 
calibration or physical changes in the sensor system. The 
governing equation is Yf = X + β + noise, where β is the 
constant offset value. A time variant β results into drift 
failures.  

Drift: A time varying offset from the nominal statistics of 
the sensor signal. Generally, only linear drifts have been 
modeled in the literature. However, a non-linear drift may be 
possible. Drift failures may be represented as Yf = X + δ(t) + 
noise, where δ(t) is the time varying offset factor. 

Scaling (or gain failure): Magnitudes are scaled by a factor 
α(t) where the form of the waveform itself does not change 
[1]. Scaling can be represented by Yf = α(t)* X + noise, where 
0 < α(t) < ∞ is a scaling constant that may be time varying. 

Noise: A random time series is observed. For analytical 
simplicity it is usually assumed that the noise is zero mean 
unless some information is available otherwise. It may be 
represented as Yf  = noise. 

Hard Fault: The sensor output is stuck at a particular level 
expressed by Yf  = C + noise, where C is a constant. In general 
there are three sub-categories for hard failures. 
1) Loss of Signal: represents the complete loss of sensor data 

where the output from the sensor is zero (C=0) [1]. 
2) Stuck Sensor: represents the situation where sensor output 

is stuck at a constant value. 
Intermittents: Deviations from normal readings appear and 

disappear several times from the sensor signal. The frequency 
of such signatures is generally random. Intermittents can 
appear in any of the failure modes described above. Due to 
their random nature, they are the most difficult to track, 
identify, and account for in diagnostics algorithms. 

Other categorizations exist - for example one that rates the 
quality of the sensor faults [2]. In particular, tame faults, are 
fault signals that are both close to nominal signal range and 
somehow correlated to it [1]. Faults such as bias and drift may 
fall into this category. Additive faults (like bias and drift) have 
been also classified into deterministic (constant offset) or 
semi-deterministic (offsets jump at random intervals and with 
random amplitudes) [3]. 

III. SENSED PHENOMENA 
To be able to better model sensor faults, it is important to 

have an insight into the basic operating principles of the 
common sensors and the most common fault mechanisms. The 
phenomena discussed here include only those of most interest 
to aerospace systems, i.e. the ones encountered in temperature, 
acceleration, pressure, strain, force, load, current, and position 
measurements. Several other types of sensors commonly used 
in aerospace applications, such as attitude, direction, radiation, 
flow, and others, are left for future studies. 

Measurements done by a sensor rely on a particular physical 
property or behavior of materials. With suitable infrastructure, 
these properties can be used to sense / measure several distinct 
phenomena. For instance, a resistance strain gage can be used 
to measure strain, stress, loads or pressure, depending on the 
application. The mechanism of a particular type of fault and its 
frequency depends, of course, on the physical design of the 
sensor. The sensor mechanisms covered and their 
corresponding uses (in italics) are as follows: 
1) Thermocouples : temperature 
2) Resistance Temperature Detectors (RTD) : temperature 
3) Piezoelectric: acceleration, vibrations, pressure, strain, 

force 
4) Piezoresistive: strain, force, pressure, acceleration 
5) Resistive strain: strain, force, pressure 
6) Hall Effect: current, linear displacement 
7) Magnetostrictive effects: linear displacement 
8) LVDT: linear displacement, acceleration 
 

This list is certainly not complete, but is representative of 
the more commonly used sensors. Lastly, it needs to be 
mentioned that while the root causes of a sensor fault can be 
either a failure of the sensing mechanism itself or of the 
electrical system interpreting the data, only the former cases 
are discussed in this paper. 

A. Thermocouples 
Thermoelectric EMF is created in the presence of a 

temperature difference between two different metals or 
semiconductors. Thermocouples use this effect, called the 
Seebeck effect [4], to detect the temperature difference 
between two sources.  A thermocouple circuit consists of two 
metals, e.g. copper and constantan, with two junctions at 
temperature To (test junction) and Tr as reference temperature 
(Fig. 1). Thermocouples have the widest temperature range of 
all sensor technologies, -200 to +2315°C, and can be used in a 
wide variety of environments [5]. 

 
Fig. 1 : Thermocouple with External Reference Junction [6]. 

Faults in Thermocouples: 
1) Degradation, corrosion or breakage of junction leading to 

bias, scaling, intermittent and/or complete failure [6]. 
2) Inhomogeneous changes in composition of the material 
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taking place due to long exposures to high temperatures, 
resulting in thermoelectric drift.[7, 8]. 

3) When a thermocouple is bonded to a test surface, 
degradation of this bond may lead to the junction being at 
a lower temperature than the body, thus causing a bias. 

4) A short (or degradation) in the lead wires due to 
temperature, leading to complete failure, bias, or drift [4]. 

5) Change in the reference temperature leading to bias [6]. 
6) Change in the thickness of the conducting leads causing a 

change in resistance, leading to a scaling error. 

B. Resistance Temperature Detectors (RTD) 
In an RTD, resistance increases with rise in temperature [4] 

due to the positive temperature coefficient of electrical 
resistance of metals. Precision RTDs consist of a thin 
insulated platinum wire encapsulated in a ceramic or metallic 
casing (Fig. 2). These casings are then immersed into the fluid 
or bonded to the surface for temperature measurement.  Their 
normal operation range is –184.44°C to 648.88°C in this range 
they are both more accurate and have more linear 
characteristics than thermocouples [4]. No reference 
temperature is needed for the RTDs, but they have to be 
calibrated carefully at a particular temperature.  

 
Fig. 2 : A standard Platinum Resistance Thermometer [5]. 

Faults in RTD’s: 
1) Over time exposure to high temperatures can cause a drift 

in the values of the RTD to several degrees per year [4]. 
2) A current passing through the RTD causes self heating of 

the element that can lead to a bias in the readings [4, 9]. 
3) Thin Film RTDs experience change in resistance due to 

surface stresses, which can lead to a bias in the readings. 
4) Shock and vibration put strain on resistive wire and 

change its characteristics, leading to drift [4]. 
5) Degradation of insulation can cause a short between the 

coils and result in a lower resistance reading, leading to 
bias [4]. 

C. Piezoelectric sensors  
Piezoelectricity is the ability of some materials (certain 

crystals and ceramics) to generate an electric potential in 
response to applied mechanical stress. A typical piezoelectric 
sensor consists of a piezoelectric crystal which is bonded to 
the surface of interest. Electrodes are connected to the either 
end of the crystal to sense the electric potential (charge) which 
can then be related to the stress experienced by the crystal -  
using piezoelectric and stress coupled equations (Fig. 3). They 
have a wide frequency range, from 0.01 Hz to 1 MHz [5], and 
temperature range from -270°C to +650°C.  

 
Fig. 3 : Piezoelectric accelerometer in compression mode [5]. 

Depending on the type of stress applied, a piezoelectric crystal 
can be used for sensing the following properties [4]:  
1) Accelerations, from the stress induced in the piezoelectric 

crystal by a seismic mass (compression, flexure, or shear 
modes). 

2) Vibrations, when mounted directly onto a surface. 
3) Strain, when a thin piezoelectric crystal is bonded to a 

surface.  
4) Pressure, either sensed directly by a piezoelectric disk (for 

high pressure applications) or via strains induced in a 
diaphragm. 

5) Forces, by transmitting them directly through the crystal. 
 

Faults in piezoelectric sensors: 
1) Debonding due to degradation of the interface between 

the piezoelectric crystal and the substrate (or the seismic 
mass) over time can lead to either lower stresses being 
transferred between them resulting in a scaling error 
(scale factor < 1) or a change in the frequency response of 
the crystal, which may, in turn, affect high frequency 
behavior of the sensor [10]. 

2) Cracking of the crystal due to fatigue or shock causes 
scaling of the outputs from the sensor or a frequency shift 
of the sensor [11]. 

3) Depolarization of the crystal takes place if the crystal is 
subjected to temperatures above the operating range, even 
for a small time, that can result in a partial or complete 
loss of sensing capabilities [12]. 

4) Electric or mechanical fatigue of the crystal over time 
causes loss of polarization of the crystal, leading to 
scaling errors in the sensor [12]. 

5) Loss of contact between the crystal and the lead wires 
over time due to fatigue or shock can lead to intermittent 
or complete failure. 

6) Temperature variations can lead to a change in the 
electro-mechanical properties of the crystals, resulting in 
bias or drift. 

D. Piezoresistive sensors 
The piezoresistive effect is the change in electrical 

resistance of a material due to applied mechanical stress 
(which is different from the change in resistance due to 
dimensional changes, as in a strain gage). Ceramics (or 
semiconductors) are typically used as the sensing material 
since metals have very high gage factors (Fig. 4). 
Piezoresistive sensors can be used in static applications and 
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moderately high frequencies up to 2500 Hz [4] and in thermal  
environments as high as 540°C [5]. Their operating range is up 
to 25G and they can withstand shocks of up to 2000G [9]. The 
principles of operation of piezoresistive sensors are the same 
as that of piezoelectric sensors, with the difference in the 
frequency range and shock characteristics. Piezoresistive 
sensors can be configured in the same ways as piezoelectric 
ones - to sense accelerations, forces, strains, pressures and low 
frequency vibrations. 

 
Fig. 4 : An absolute pressure sensor with a hermetically sealed vacuum 

reference chamber on one side of the sensing element [5]. 

Faults in Piezoresistive Sensors: 
1) Debonding of the interface between the piezoresistive 

element and the substrate can lead to a lower degree of 
stresses transfer to the piezoresistive element, which in 
turn can lead to a scaling error. 

2) Cracking of the piezoresistive element due to excessive 
fatigue or shock can lead to a scaling error and, in 
extreme cases, a complete failure. 

3) Loss of contact between the element and the lead wires or 
electrodes can lead to intermittent or complete failure of 
the sensor. 

4) Temperature variations can lead to a change in the 
electro-mechanical properties of the element, leading to 
bias in the readings. 

E. Resistive Strain Gage  
Resistive strain gages rely upon the change in the resistance 

due to the dimensional changes in the material (as opposed to 
change in material characteristics for piezoresistive materials) 
[9]. These gages consist of a grid of very fine wire or foil 
bonded to a backing (Fig. 5). The electrical resistance of the 
grid varies linearly with strain. Strain gages are good for 
detecting local strains, but have lower gage factors than the 
piezoresistive gages, which is compensated for by making 
them larger in size. They can generally be used only in 
applications which are static or have low vibration 
frequencies. Strain gages are also used in load cells or pressure 
transducers by measuring the stresses in the diaphragm, and in 
some cases,  for measuring temperatures [5]. 

 

Fig. 5: A Typical Foil Strain gage [13]. 

Faults in Strain Gages: 
1) Gaps in the bonding layer between the strain gage and the 

substrate lead to either bias or scaling error, depending on 
the nature of the void. Debonding of the gage will result 
in the same faults. This is of critical importance since the 
bond area in a strain gage is much larger than that in 
piezoresistive or piezoelectric sensors [6].  

2) Fatigue of the wire or foil can lead to cracks, causing 
either bias or scaling (change of gage factor) fault. In 
extreme cases, complete failure may occur [13]. 

3) Temperature variations between the loaded and the 
temperature-compensated strain gage can lead to bias 
[13]. 

4) Loss of contact between the lead wires and the tabs on the 
strain gage leads to intermittent or complete failure of the 
sensor. 

F. Hall effect sensors 
A voltage potential VH, called Hall voltage, appears across a 

conductor when a magnetic field is applied at right angles to 
the current flow. Its direction is perpendicular to both the 
magnetic field and the current and its magnitude is 
proportional to both the magnetic flux density and the current 
(see Fig. 6)  

 
Fig. 6: a) Hall effect in a conductor, b) a hall effect current sensor [4]. 

The magnetic field causes a gradient of carrier 
concentration across the conductor A larger number of carriers 
on one side of the conductor, compared to the other side, 
causes a voltage potential VH, [4]. Typically a ferrite crystal 
around a current carrying conductor is used to concentrate the 
magnetic field of the current, around a sensor. A bias current 
is then applied to the sensor and Hall voltage measured, which 
is proportional to the current in the main conductor. A Hall 
effect displacement sensor can utilizes a Hall sensor and a 
movable magnet, with an output proportional to the distance 
between the two. 

 
Faults in Hall effect sensors: 

1) Flaws in the core, such as degradation (corrosion, cracks), 
residual magnetic fields, or core breakage can result in a 
bias. 

2) Changes in the bias current through the sensor can result 
in bias or scaling. 

3) Temperature variations can change the magnetic 
properties of the ferrite core, resulting in decrease (or 
increase) of the induced magnetization, causing a bias in 
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the readings. 
4) Changes in the orientation of the induced magnetic field 

in the sensor (due to mechanical shocks or other reasons) 
can change the value of Hall voltage and lead to a scaling 
error. 

G. Magnetostrictive Sensor 
Ferromagnetic materials such as iron and nickel display the 

property of magnetostriction, where application of a magnetic 
field causes a strain in the crystal structure, resulting in a 
change in size and shape of the material [4]. To measure 
displacement, a moving magnet forms the “target”, marking 
the position. The magnet’s field, acting on a magnetostrictive 
wire, creates an ultrasonic pulse in the wire when a current 
pulse is passed through the wire. The time interval from the 
current pulse to the detection of the ultrasonic pulse at the end 
of the wire is used to determine the position of the magnet 
along the wire (Fig. 7) [9]. 

 
Fig. 7: Magnetostrictive principle for displacement measurement [14]. 

Faults in magnetostrictive sensors: 
1) Changes in temperature cause a change in the velocity of 

propagation of sound through the magnetostrictive wire, 
which can lead to bias. Temperature also changes the 
magnetostrictive properties of materials, resulting in a 
bias [15]. 

2) Degradation (corrosion) of the ferromagnetic wire can 
lead to changes in the magnetosctrictive and ultrasonic 
properties, resulting in bias. 

3) Loss of contact at the receiving end for the strain pulses 
can result in intermittent or complete failure. 

4) Stray magnetic fields (particularly strong fields) can cause 
a random error in readings or result in excessive noise. 

H. Linear Variable Differential Transformer (LVDT) 
An LVDT is a position-to-electrical sensor whose output is 

proportional to the position of a movable magnetic core. The 
core moves linearly inside a transformer consisting of a center 
primary coil and two outer secondary coils wound on a 
cylindrical form (Fig. 8). The secondary windings are wound 
out of phase with each other. Moving the core, results in a 
differential voltage between secondary coils, which varies 
linearly with the core’s position [5]. The LVDT can be 
coupled with a spring-mass system to detect the displacement 

of the spring to measure acceleration or force [4]. 

 
Fig. 8: Construction of a LVDT [4]. 

Faults in LVDT’s: 
1) Short in one of the coils can lead to either a bias or 

complete failure of the sensor. 
2) Leakage of magnetic fields between the secondary coils 

can lead to a bias [5]. 
3) Changes in the primary voltage lead to a smaller induced 

voltage in the secondary, leading to a scaling error. 
Table 1 shows the range and median for the different fault 

classes that have been found in the literature. This will provide 
an aid in modeling the sensor faults with realistic magnitudes 
when superimposed onto real data.  It will also allow 
simulation of diverse sensor faults and subsequent training of 
algorithms to detect these sensor faults and distinguish them 
from system component faults.  The number of references in 
literature showing actual sensor faults is found to be very 
limited; hence we list these statistics for a range of different 
sensors. 

TABLE 1 : TYPICAL RANGES FOR SENSOR FAILURE VALUES AS AVAILABLE 
FROM THE LITERATURE. 

Fault Range Median Remarks Sensors & References 

Bias 1.2% to 
60% 20% % change over 

the nominal value 

Unknown [16] 
Air flow [17] 
Temperature, Fuel Flow, 
rotor speed [18] 

0.3 to 0.7 0.45 Scale Factor Piezoelectric [10, 12] 
Accelerometers [1] Scaling 

2.5 to 4.8 3.28 Scale Factor Accelerometers [1] 

Drift 6% to 
75% 29% 

% change over 
the nominal 
value, reported at 
the end of the 
drift (or data set) 

Unknown [16] 
Fuel Flow [17] 
Temperature [18] 

Noise 2.5% -to 
250% 20% 

% peak to peak 
values over the  
nominal value 

Unknown [16] 
Pressure [17] 
Temperature, Fuel Flow, 
rotor speed [18] 
Accelerometers [19] 
Gyroscope [20] 

Intermittent 
Dropout 

2 to 10 
drops 8 drops 

Over a range of 
20% to 29% of 
the reported data 
set, with median 
range of 23% 

Unknown [16] 

IV. SENSOR FAULT DETECTION AND IDENTIFICATION (FDI) 
TECHNIQUES 

The problem of fault detection and disambiguation has been 
approached from various angles in the past three decades. A 
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wide variety of techniques have been reported; they can, 
however, be categorized into four basic categories. The 
emphasis on each of these categories has changed with time 
and all come with their own strengths and shortcomings. A 
brief overview of such approaches is presented here. 

Most of the early work has focused on model-based sensor 
fault detection and disambiguation methods which, in general, 
require mathematical models of the system under investigation 
and utilize analytical redundancy generated by these models 
[3, 21]. The majority of these approaches first compare the 
observed sensor output and parameter estimates obtained from 
the model to compute residuals. There are few distinct 
categories for model-based approaches [22]. Parity approaches 
compute a residual vector that is zero when no fault is present 
and non-zero otherwise, to detect that a fault has occurred. 
Various parity approaches include Parity Space Approach 
(PSA) [23], Parity Equation Approach (PEA) [24], 
Generalized Likelihood Ratio Test (GLT), and Least Square 
Residual Approach (LSRA). Another approach is based on 
Bank of Observers (state estimators) that offer to cancel out 
the contribution of noise and model inaccuracies [25-27]. State 
Estimation Approaches based on Kalman Filters generate an 
estimate that can be used to compute residuals by comparing it 
with measured states [28, 29]. Other model based approaches 
include Fault Detection Filters [3], and Parameter 
Identification Approaches [30] that model various faults and 
track corresponding model parameters. Sometimes, the 
performance of analytic redundancy based FDI techniques is 
limited by modeling uncertainties.  

In the recent years a great emphasis has been laid on data-
driven methods as well, where signal processing and artificial 
intelligence techniques are employed. Such techniques are 
especially important in situations where the complexity of the 
system make it extremely difficult to model. These methods 
are relatively simpler and quicker to implement. Features are 
computed using standard statistical estimates or utilizing 
specialized domain knowledge [31, 32]. Various machine 
learning approaches, like Artificial Neural Networks (ANN), 
are very popular in the literature. Furthermore, expert system 
based approaches have also been used, where history data is 
used to construct a set of rules to diagnose system and sensor 
faults. Hybrid techniques have been developed to complement 
various individual techniques. For instance, in [24] authors 
propose a hybrid method that combines Parity Equation 
Approach (PEA) with wavelet based signal processing to 
avoid the need of a mathematical model of the aircraft. A 
pseudo model-based approach based on Principal Component 
Analysis (PCA) has been proposed in [29] where PCA is used 
to compute residuals in the absence of a mathematical model.  

Therefore, a significant emphasis has been laid on generic 
fault detection techniques borrowing ideas from system 
diagnostics; however, the efforts on detecting specific sensor 
faults are less evident. In the absence of real sensor fault data 
it may be desirable to simulate realistic fault scenarios and 
develop specific techniques that will address more robust 
solutions to sensor fault detection and disambiguation from 
system faults.  That will, in turn, improve the confidence on 

overall system diagnostics. 

V. EXPERIMENTAL SETUP 
A ballscrew electromechanical actuator was used as the 

plant in our experiments. The experiments were performed on 
a test stand located at Moog Inc.  The test actuator (Moog 
MaxForce 883-023) was connected to the hydraulic load 
cylinder by a rotating horn.  Control and data acquisition were 
performed by real-time software running on dSPACE 
platform.  Table 2 contains a list of all of the sensors used on 
the test platform, as well as their associated sampling 
frequencies. 

Vibration was measured at four points on the test actuator,  
as shown in Fig. 9. All three axes of vibration were measured, 
with an additional measurement in the Z-direction by the 
accelerometer mounted directly on the nut of the ball screw.  
Temperature measurements were provided by a T-type 
thermocouple on the nut and an RTD embedded in the stator 
of the motor, as shown in.  Fig. 9. Load is sensed by a Model 
75 Sensotek 50,000 lbf. load cell.  The position of the rod end 
of the test actuator was measured by a Trans-Tek 0219-0000 
Linear Differential Voltage Transducer (LVDT). 

TABLE 2 : LIST OF SENSORS. 

Measurement Sensor Type Sample Rate 

Load 
Model 75  
Sensotec Load  
Cell 

Bonded foil strain 
gage compression 
and tension 

3 kHz 

Position  Trans-Tek  
0219-0000  LVDT 3 kHz 

Nut Temperature T-type 
Thermocouple 

Copper-constantan 
thermocouple 3 kHz 

Motor Temperature Integrated  
Stator RTD RTD (thermistor) 3 kHz 

Torque Producing 
Current 

T200 Motor  
Drive Output Hall effect sensor 3 kHz 

Motor Velocity T200 Motor  
Drive Output Resolver 3 kHz 

3-Phase Currents 
(3) LEM LA  
25-P Current  
Transducers 

Closed loop 
(compensated), 
works on 
Hall effect 

24 kHz 

X-Y-Z 
Accelerometers 

(3) PCB Model 
352A24 

Piezoelectric 
ceramic, shear 24 kHz 

Nut Accelerometer PCB Model  
352A24 

Piezoelectric 
ceramic, shear 24 kHz 

 
LEM LA 25-P current transducers were used on each motor 

phase to sense the phase currents.  For data acquisition, the 
Moog T200 motor drive output an analog signal representing 
the torque producing current, as well as the motor velocity. 
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Fig. 9 : Location of sensors on Moog MaxForce 883-023 actuator. 

A. Tests Performed 
Table 3 describes the types of mechanical component fault 
cases introduced during the tests. 
TABLE 3 : DIFFERENT EXPERIMENTS PERFORMED WITH SEEDED MECHANICAL 

COMPONENT FAULTS. 

Experiment Set Description 
Baseline Data collected with a nominal actuator just before the 

first set of ball return jam tests. 
One Ball Return 
Jammed 

One of the return channels fully blocked.  Simulates 
obstruction of the return channel by a detached piece of 
insulation or other debris. 

Repeatability Tests to determine whether disassembly and reassembly 
of actuators affects test results.  Five back to back runs 
were conducted. 

Backlash Tests with undersized balls to simulate backlash 
(freeplay) 

Spalling The purpose of this series of tests was to determine if a 
surface flaw (spall) can be detected using the actuator 
sensor suit. Three flaws have been electro-discharge 
machined into the screw of the actuator.  The flaws were 
machined into the entire root of the screw forming a 
continuous flaw from crest to crest. 

 
Sensor faults were injected a posteriori, as described in the 

next section.  Permutations of the following conditions were 
used to run 2 x 2 x 2 = 8 scenarios for each of the mechanical 
component fault cases: 
Motion profile: sinusoid or triangular wave 
Load type: constant or spring 
Load level: low (860 lbs spring force, 900 lbs constant force) 
or high (1725 lbs spring force, 1800 lbs constant force) 

For the purposes of training and testing the neural network 
based classifier, described in the subsequent sections, 
extended duration scenarios were created using the collected 
data.  These scenarios were designed to preserve the character 
of the collected data as much as possible, while extending the 
duration to 180 seconds.  They contain two segments each – 
nominal, to represent a healthy system before the fault 
occurred and a faulty segment (90 seconds each).  Since on the 
test stand the faults had to be seeded before the start of the 
tests, due to hardware limitations, nominal data was chosen 
from the experiments conducted under the same conditions.  
The total number of scenarios produced was 48 - 8 
(conditions) x (2 components faults + 4 sensor faults). 

VI. SENSOR FAULT SIMULATIONS 
Bias: in our experiments bias, injected into temperature sensor 
data, was specified as percentage of the average baseline 

temperature (80F), calculated over the set of nominal (no fault 
injected) scenarios. Gaussian noise was then introduced into 
the actual amount of bias added, with a signal-to-noise ratio of 
5 (see Fig. 10).  

 
Fig. 10: Simulating various sensor faults in different sensor signals. 

Drift: this fault was also injected into the nut temperature 
data.  The fault was defined by specifying drift velocity 
(distance traveled in a certain period of time).  The length of 
constant drift velocity segments was randomized (max 1000 
data points) and Gaussian noise introduced into velocity value 
itself – so for each segment the velocity may be somewhat 
different from its neighbors.  The signal-to-noise ratio for the 
later was set to 5. 

Scaling: the signal is amplified by the scaling factor, also 
with Gaussian noise injected (SNR of 5). 

Loss of Signal: sensor data from the point of failure 
replaced by all zeros. 

VII. CLASSIFIER DIAGNOSTICS SYSTEM 
Given the complexity of the experimental data and the 

variety of failure modes (actuator and sensor failures), a 
diagnostic system based on Artificial Neural Networks (ANN) 
was designed. A comprehensive analysis of data was carried 
out to extract a set of uncorrelated features that would not only 
detect various fault modes but also disambiguate between 
sensor and system faults. Keeping this requirement of being 
able to disambiguate between system and sensor faults, the 
confusion matrix was further partitioned into sections that 
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helped interpret results accordingly. This section explains the 
implementation details and enumerates various key aspect of 
the classifier diagnostic system. 

A. Feature Extraction 
Feature extraction is one of the most important steps in 

building a successful (accurate and reliable) diagnostic 
system. For a successful practical implementation it is 
desirable that features are not only be computationally 
inexpensive but also explainable in physical terms. 
Furthermore, they should be characterized by a) large 
between-class and small within-class variance, b) should be 
fairly insensitive to external variables like noise, and c) should 
be uncorrelated with other features. Keeping these issues in 
mind we selected a set of seven features that were expected to 
detect and distinguish between a healthy system, two actuator 
fault modes, and four different sensor faults (see Table 4). 

TABLE 4. FAULT VS. FEATURE MATRIX SHOWING RELEVANCE OF INDIVIDUAL 
FEATURES IN DISAMBIGUATING BETWEEN VARIOUS FAULTS 

 
In addition, since there were several different experimental 

conditions that considerably affect the sensor measurements, 
two additional features were designed that characterize the 
experimental conditions. Features were calculated every half 
second on a one second long sliding window. Thus for each 90 
second long segment, under various conditions, 180 feature 
points were available. These features are briefly described in 
Table 5. 

 
TABLE 5 : VARIOUS FEATURES AS INPUTS TO THE CLASSIFIER FOR TRAINING AND 

TESTING EXPERIMENTS. 

Feature Sensors Definition Fault Modes Rationale 

Temperature 
Deviation 
(TD) 

Nut thermocouple, 
Motor 
thermocouple 

Absolute deviation from nominal 
temperature range 

Spall, jam, sensor 
bias 

Nut temperature rises due to increased friction from 
spalled nut. Motor temperature rises due to increased 
current levels to counter increased resistance 

Temperatures also change due to bias 

Drift Indicator 
(DI) 

Nut thermocouple, 
Motor 
thermocouple 

A binary feature that assumes the value 
one, if a finite rate of change of 
temperature is detected within the 
sampling window, and zero otherwise 

Sensor drift Monitoring over  some period of time can help identify 
sensor drift and distinguish it from bias, which is not 
expected to change continuously in shorter time-
intervals 

Signal Standard 
Deviation 
(SD) 

Accelerometers: 
X, Y, Z on motor 
housing and one 
on the Nut 

Standard deviation of the signal within 
one sampling window 

Jam, dead sensor Jam reflects in increased vibrations of the 
accelerometers mounted on the motor. Dead sensor 
results in zero output 

Load Profile 
Indicator Position sensor 

Characterizes the smoothness of load 
profiles ranging between smooth 
sinusoids to rough triangular profiles 

All Nature of load the profile significantly changes the 
vibration signature of the system. This difference 
should be distinguished from failure signatures 

Force Indicator Position sensor 

Assesses the force on actuator. For 
opposing force motion the force 
remains constant, proportional to peak 
loads. For spring motion force varies 
with the position and is a fraction of the 
peak loads 

All 
Given combinations of two different load conditions 
and two load application methods, differences in 
corresponding sensor signatures should be 
distinguished from fault signatures 

B. Diagnostic Classifier 
A multi-category classifier was implemented using a three 

layer Artificial Neural Network (ANN). The first layer 
consisted of nine nodes, with tansigmoid transfer functions, 

one for each feature in the input feature vector. The hidden 
layer had five nodes with logsigmoid transfer function and the 
output layer had seven nodes with logsigmoid transfer 
functions one for each of the seven classification categories. 
All input features were continuous real-valued and were 

Features Faults 
TDNut TDMotor SDx SDy SDZ DI 

Return Channel 
Ball Jam X X X X X  

Spall   X X X  
Nut 
thermocouple 
Drift 

X     X 

Nut 
thermocouple 
Bias 

X      

Z Accel. 
Scaling     X  

X Accel 
Complete 
Failure 

  X    
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standardized to have zero mean and unit variance [33]. Binary 
targets were assigned such that of the seven output bits only 
the correct category bit was 1 and the rest were 0. Initial 
weights for the network were chosen based on standardized 
input ranges to ensure uniform learning [33]. Networks were 
trained using the resilient back-propagation (RPROP) 
algorithm [34]. 

C. Evaluation Procedure 
Data was divided into two sets for training and testing 

purposes based on the experiment load levels. The network 
was trained on low load conditions (~900lbs) and was tested 
for high load (~1800lbs) conditions. In order to obtain a 
meaningful statistic, 30 ANNs were trained and tested for each 
experiment and the results averaged. Training was carried out 
for 200 epochs. Results were further aggregated in the form of 
a confusion matrix as shown below to observe the False 
Positive rate (FP), False Negative rate (FN), Misclassification 
rate (MC), and Non-Identification rate (NI). As expected, it 
was observed that the detection and disambiguation 
performance varied with changing sensor fault magnitudes. 
Therefore, a sensitivity analysis was carried out to characterize 
the effect of sensor failure magnitudes. For each of the three 
sensor faults drift, bias, and scaling corresponding fault 
parameter was varied one by one over a wide range of values 
while keeping other fault parameters fixed at a predetermined 
level derived from typical ranges available from the literature. 
More specifically, these predetermined values are temperature 
bias fixed at an offset of 100% of peak-to-peak magnitude, 
temperature drift fixed at 0.02 °F/sec, and scaling fixed at 1.5 
times. The ranges of variation for these parameters are shown 
in Table  6. 

TABLE  6. RANGES OF SENSOR FAULT PARAMETER VARIATION FOR CLASSIFIER 
SENSITIVITY ANALYSIS. 

VIII. RESULTS AND DISCUSSION 
Results were aggregated in two ways. First, the 

performance was evaluated in terms of sensitivity of metrics 
(FP, FN, MC, and NI) from the classifier for individual sensor 
faults. Therefore, if parameters for a sensor fault fi, were 
varied, the effect was recorded only on the performance of 
classifier in classifying the sensor fault fi, even though all 
other (system and sensor) fault modes were also present. 
Second, an overall performance assessment was made and an 
aggregate number was recorded for total FP, FN, MC, and NI 
rates for all faults combined as the intensity of a single sensor 
fault fi was varied. The metrics for individual sensor faults are 
defined as follows.  
False Positive: Sensor fault fi is reported when no fault 
present. 
False Negative: No fault reported when a sensor fault fi 
present. 

Misclassification: A system fault reported when sensor fault fi 
present or sensor fault fi reported when a system fault is 
present. 
Non Identification: A fault detected but not identified when 
sensor fault fi present. 

As shown in Fig. 11, the diagnostic classifier implemented 
in this study is slightly sensitive to small drifts. For small 
drifts it becomes difficult to disambiguate between drift fault 
and baseline data, and hence a higher false negative rate. As 
drift velocity increases, it is easier to correctly identify a drift 
fault. The overall detection and disambiguation performance is 
within 5% FP, within 4% FN, less than 2% MC, and NI 
generally less than 8% except for low drift velocities where it 
is as high as 16% in some cases. 
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Fig. 11: Sensitivity of the classifier as drift velocity parameter changes. 

 
Fig. 12 shows the classifier performance for bias sensor 

fault. Here the sensitivity of the classifier can be clearly seen. 
The reason for this sensitivity can, however, be attributed to 
two factors. First, for low bias there is a high false negative 
rate as it is difficult to distinguish from baseline data. Second, 
several fault modes, like ball jam and spall also result in 
increased operating temperatures, just like bias. However, 
since jam and spall are also reflected in other features that do 
not trigger in the presence of bias, a high non-identification 
rate is also observed. In terms of overall performance, once 
again less than 4% FP and FN are observed whereas NI goes 
as high as 18% for low values of bias. Misclassification rate is 
negligible. 
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Fig. 12: Sensitivity of the classifier bias parameter changes. 

Scaling fault detection performance deteriorates when 
scaling coefficient is close to one. As evident from Fig. 13, it’s 
easier to detect both a down scaled signal or an up scaled 
signal but problems arise when fault signal is very identical to 
the healthy signal. For the scaling case, the overall NI rate was 
observed as high as up to 29% at scaling values close to one. 

Sensor Fault  Min Value Max Value 

Bias 0 500% of peak-to-peak magnitude offset 
Drift 0.005 °F/sec 0.25 °F/sec 
Scaling 0.1x 5x 
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FP rates remain low within 5%, FN within 4%, and MC less 
than 1% when combined for all fault scenarios. 
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Fig. 13: Sensitivity of the classifier as scaling parameter changes. 

Therefore, it can be concluded that in this study, the overall 
performance of the classifier, remains consistent with low FP, 
FN, and MC rates varying in the range of 0-7%, except for the 
NI rate which becomes high in more sensitive ranges for all 
three fault modes. Features are needed that are less sensitive to 
fault intensity parameters. The sensitivity analysis provides a 
useful insight into the fault classification problem where a 
classifier must be evaluated for all possible fault scenarios and 
designed to provide a more robust fault diagnosis. 

IX. PLANS FOR FUTURE WORK 
There are a number of different avenues for future work. 

First, the set of sensors needs to be more exhaustively 
explored for sensors not covered in this article. While a first 
stab was taken at examining sensors of most interest within a 
narrow application domain, there is still a wide suite of 
unexplored sensors. In addition, other fault modes should be 
considered. While we have constrained this investigation to 
the faults occurring within the sensors themselves, a large 
number of faults associated with sensors are due to data 
acquisition (analog-to-digital converters, signal conditioning, 
etc.), electrical systems supporting sensor operation (power 
supplies), and other reasons. Moreover, some sensor fault 
types, such as intermittencies should be the subject of closer 
examination since they cause a large number of problems in 
real systems. 

While in this work we have studied a classifier system that 
distinguished between sensor faults and system faults, it 
should be investigated how these classifiers (or reasoners) can 
be scaled to deal with large systems. This can be accomplished 
by a system-of-systems approach, by developing sensor fault 
tolerant schemes, or by modeling explicit or implicit function 
or analytical redundancies. Classifiers rely on features to allow 
optimal detection of sensor faults. While the features 
described herein focused mostly on time-domain features, 
other features (e.g., frequency-based feature) should be 
considered. In practice, sensor fault detection should go hand-
in-hand with accommodation strategies. The understanding 
gained in the underlying mechanisms of sensor faults should 
be tapped into when considering new techniques for sensor 
accommodation. This should help in making system health 
management a more viable.  

Another avenue for future work is the verification of the 
fault models developed. Experiments with seeded sensor faults 
on real systems should be conducted to confirm that the 
models behave correctly. To that end, plans are under way to 
carry out sensor fault experiments on a new actuator test stand 
at NASA Ames by manipulating sensors to induce certain 
types of faults and observe their signatures while the system 
operates under a variety of load conditions.Among other 
topics, it will aid in diagnostic and prognostic work for 
position measurement devices, such as LVDTs and 
resolvers/encoders, as one of the key feautures of the stand is 
an external, high-precision laser-triangulation position sensor 

X. CONCLUSIONS 
This paper has examined the physical underpinnings of 

sensor faults and has mapped them to five main categories. 
The ultimate goal has been to enable better systems health 
management by providing an insight into the behavior of 
sensor faults (as opposed to treating them as black box) which 
in turn might lead to improved fault accommodation 
strategies. In that spirit, a fault detector/classifier has been 
shown that successfully handles the set of faults under study 
for a wide range of fault parameters.  A major contribution is 
the sensitivity of the classifier to variations of the fault 
parameters which identifies the regions in which sensor faults 
might pose a problem for the health reasoner. This approach 
might suggest a methodology of more generally developing 
and testing diagnostic systems on a wider range of possible 
sensor faults. A comprehensive analysis of sensor faults might 
ultimately lead to more robust system health management 
reasoners. 
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